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Abstract

A definition of acoustic power in conservation form in lined infinitely long uniform ducts is extended to include axially

symmetric non-uniform ducts with potential mean flow and finite length lining. The definition includes a contribution at the

lined boundary. Benchmarking is accomplished by verification of acoustic power conservation in the case of a purely reactive

lining. Calculations in the case of reactively lined ducts show that intense acoustic gradients near the lined surface can occur, and

contributions to acoustic power from the boundary power term become relatively large. This observed behavior diminishes as

the resistive component of lining impedance is increased. Power calculations for propagation and radiation from a typical turbo-

fan inlet and equivalent calculations for an infinite duct propagation model of the same inlet contour are compared. Results are

remarkably similar for the case considered, though it is noted that this conclusion is geometry dependent.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic power is a convenient metric for quantification of performance of acoustic treatment in ducts.
When there is no flow in the duct, the calculation of acoustic intensity and power is straightforward [1]. When
steady uniform mean flow is present in a uniform duct, acoustic intensity is given in a form attributed to
Ryshov and Shefter [2]. For propagation in potential mean flows in non-uniform ducts, a relationship for
intensity due to Morfey [3] is applicable. Candel [4] has reviewed much of the literature pertaining to energy
relationships in acoustics and identifies the Ryshov and Shefter and Morfey formulations as distinct
approaches. In the common case of uniform flow in uniform ducts, the Morfey and Ryshov and Shefter
representations for acoustic intensity do not match. Eversman [5] has identified how the two approaches
correspond to different, but equivalent variational formulations. Other definitions of acoustic intensity have
been given by Moehring for sheared flows [6] and by Godin for more general flows [7].

Eversman [5] derived acoustic power conservation relationships for the Ryshov and Shefter and Morfey
intensity formulations in the case of uniform flow in a uniform duct that show that the axial gradient of
acoustic power in a uniform lined duct is simply obtained in either formulation in terms of the resistance of the
lining and the normal velocity of the lining. Furthermore, it was shown that a proper accounting of acoustic
power includes a contribution at the wall, which is in addition to the integrated intensity across the duct
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.11.028

presented as Acoustic Power in Lined Ducts at the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, England,

4 Copyright 2004 by Walter Eversman.

ess: eversman@umr.edu

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.11.028
mailto:eversman@umr.edu


ARTICLE IN PRESS
W. Eversman / Journal of Sound and Vibration 313 (2008) 723–737724
obtained from Ryshov and Shefter and Morfey formulations. Calculations were made to support these
conclusions based on acoustic duct modes in two-dimensional ducts. All conclusions were based on a uniform
duct of infinite length. The important case of a finite length lining was not considered.

The work reported here begins with an extension of the results of Eversman [5] to calculation of acoustic
power according to the Morfey formulation (used exclusively because additional results reported for non-
uniform ducts are limited to this formulation) in circular uniform ducts. With calculated acoustic modes in
lined ducts acoustic power is obtained, including the boundary contribution. It is shown that the axial gradient
of acoustic power (calculated directly from the formulation for power) matches the simple result for this
gradient based only on the lining resistance and normal surface velocity at the lining. It is found that in some
cases the boundary power is large and is an essential contribution to the total acoustic power.

Finite element models (FEM) of duct propagation and radiation for axially symmetric ducts provide the
means to calculate intensity and power at the source and at locations along the duct and in the far field. In the
work reported here, the Morfey formulation for acoustic intensity augmented by Eversman’s appended
boundary power is used to post-process FEM calculations for acoustic potential in non-uniform and uniform
ducts carrying potential flow to numerically examine the conservation law. In the first instance, the case of a
finite lining imbedded in a uniform duct with reflection free terminations (infinite duct) is considered. The most
telling case occurs when the lining is purely reactive and acoustic power must be conserved. It is found
numerically that acoustic power is indeed conserved for propagation from an initially unlined section, through
the treated section, into an unlined exit section. This result is also obtained in the case of a non-uniform duct.

In the case of reactively lined ducts an interesting phenomenon is found. In some cases, the power in the
interior of the duct in the lined section (obtained from integration of the Morfey power across the duct) is
directed toward the source. The requirement for net power to be directed away from the source and to be
conserved at any duct cross-section is met by acoustic power at the boundary larger in magnitude than the
interior power and directed away from the source. The sum of the boundary power and interior power is
directed away from the source and conserved, but boundary power and interior power individually vary
significantly with axial location.

Finally, FEM calculations have been made for a typical turbo-fan inlet geometry. In one case, the duct has
been modeled with a non-reflecting termination, and in a second case it has been modeled to include radiation
to the far field. For conditions, which are identical, except for unavoidable differences in details of the mean
flow, demonstration calculations show that conclusions drawn for lining performance based on acoustic
power attenuation are similar.

2. Acoustic power

In dimensional form, acoustic energy density e (energy per unit volume) and energy flux ~N (instantaneous
power per unit area) for irrotational acoustic perturbations on a potential steady mean flow in a hard wall
duct are given by [3]

e ¼
1

2

1

rlc
2
l

p2 þ
1

2
rl~v �~vþ

1

c2l
ð~V0 �~vÞp (1)

and

~N ¼ p~vþ
1

rlc
2
l

~V0p2 þ rlð
~V 0 �~vÞ~vþ

1

c2l

~V0ð~V0 �~vÞp. (2)

~V0; rl ; cl are local mean flow velocity, density, and speed of sound. p;~v are acoustic pressure and particle
velocity. Energy density and energy flux are related by the conservation law

qe

qt
þ div ~N ¼ 0. (3)

Consider a section of non-uniform duct of volume V enclosed by a surface S shown in Fig. 1. Following the
approach of Eversman [5], assume there is a section of the duct wall on which a locally reacting lining exists.
The lining is modeled with kinetic and potential energy per unit area T and U at the boundary with input
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Fig. 1. General view of a segment of an axi-symmetric duct bounded by cross-sections Ss and SE and duct wall SW. ~n is the unit outward

normal. G1 and G2 are closed contours on the duct surface SW. The light area represents the lining location.
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power per unit area due to acoustic pressure and boundary resistance proportional to boundary normal
velocity. On the wall surface Sw the power balance isZZ

Sw

q
qt
ðT þUÞdS ¼

ZZ
Sw

ðpzt � rbz
2
t ÞdS. (4)

z is the displacement of the impedance surface normal to the undeformed surface.
This would be consistent with the common single-degree-of-freedom oscillator lining model with parameters

mb, rb, kb (per unit area) according to

mbztt þ rbzt þ kbz ¼ p. (5)

In the harmonic case (frequency o), this yields the impedance relation

p

zt

¼ Z ¼ rðoÞ þ iwðoÞ ¼ rb þ i omb �
kb

o

� �
. (6)

The power formulation of Eq. (4) allows a more general linear lining model, for example two degrees of
freedom, with a more complicated impedance.

The total energy for the duct and lining enclosed by S is for the general case and for the single-degree-of-
freedom analog

E ¼

ZZZ
V

edV þ

ZZ
SW

ðT þUÞdS ¼

ZZZ
V

edV þ

ZZ
SW

1

2
mbz

2
t dS þ

ZZ
SW

1

2
kbz

2 dS. (7)

Sw denotes that portion of S that includes the duct walls and lining. By making use of the energy conservation
law (3) and the lining models of Eqs. (4) or (5) it is easily shown that

qE

qt
¼ �

ZZZ
V

div ~N dV þ

ZZ
SW

pzt dS �

ZZ
SW

rbz
2
t dS. (8)

For steady harmonic excitation, it follows that the time average of the rate of change of acoustic energy in V

vanishes, that is qE=qt
� �

¼ 0, so thatZZZ
V

div ~N
D E

dV �

ZZ
SW

pzt

� �
dS ¼ �

ZZ
SW

rb z2t
� �

dS. (9)
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With use of the divergence theorem Eq. (9) reduces to surface integrals over the total area S, enclosing the
volume V, and the wall area Sw,ZZ

S

~N �~n
D E

dS �

ZZ
SW

pzt

� �
dS ¼ �

ZZ
SW

rb z2t
� �

dS. (10)

Now in Fig. 1 consider the duct segment to be infinitesimal of length Dx. At x ¼ xs, the duct is bounded by the
cross-sectional surface Ss with normal ~n ¼ �~i. At x ¼ xE ¼ xs+Dx, the duct is bounded by cross-sectional
surface SE with normal ~n ¼~i. Because the normal component of mean flow vanishes on SW only two terms of
the integral over S are non-zero on SW. Eq. (10) becomesZZ

SE

~N �~i
D E

dS �
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SS
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D E

dS þ

ZZ
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� �
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h i
dS �

ZZ
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pzt

� �
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ZZ
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rb z2t
� �

dS. (11)

On SW the normal velocity boundary condition is [8]

~v �~n ¼ zt þ
~V 0 � grad z� z~n � ð~n � gradÞ~V 0. (12)

zt is the velocity of the boundary in the direction normal to the undeformed boundary (the normal is directed
outward).

This leads to an alternate form of Eq. (11),ZZ
SE
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D E
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For steady harmonic time dependence hrl
~V 0 � q=qtð~vzÞi ¼ 0, leading to the result

rlð
~V 0 �~vÞzt

D E
¼ � rlð

~V 0 �~vtÞz
D E

. (14)

The acoustic momentum equation provides the relationship

~vt ¼ � grad ~V0 �~vþ
p

rl

� �
. (15)

The boundary term in Eq. (13),
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is modified with the use of Eqs. (14) and (15) to yield
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This is equivalent to
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Since for the steady mean flow div rl
~V0 ¼ 0, and ~V 0 �~n ¼ 0 on SW, Eq. (18) further simplifies to

IW ¼

ZZ
SW

div rl
~V0

p

rl

þ ~V 0 �~v

� �
z

� �
� ~n � ð~n � gradÞrl

p
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z~V 0Þ

� �� 	
dS. (19)

A vector identity yields

~n � ð~n � gradÞrl
~V 0

p
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þ ~V 0 �~v

� �
z

� �

¼ div rl
~V 0

p
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� �
z

� �
� ~n � curl ~n� rl

~V 0
p

rl

þ ~V 0 �~v

� �
z

� 	� �
. (20)

With Eq. (20), the boundary integral of Eq. (18) is greatly simplified to

IW ¼

ZZ
SW

~n � curl ~n� rl
~V 0

p

rl

þ ~V 0 �~v

� �
z

� �
dS. (21)

Stokes’ Theorem allows the recasting of Eq. (21) as a line integral on the boundary G of SW. By reference to
Fig. 1, this is interpreted in terms of the contours G1 and G2 and the cut on which the net contribution
vanishes. The result is

IW ¼

I
G1

~n� rl
~V 0

p

rl

þ ~V 0 �~v

� �
z

� �
� d~Gþ

I
G2

~n� rl
~V0

p
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� �
z

� �
� d~G. (22)

The vector ~n is the outward normal to SW. ~V0 is tangent to SW with no azimuthal component. ~n� ~V 0 � d~G is
then V0 dG on G2 and �V0 dG on G1, where V0 is the velocity tangent to the surface SW. Therefore,

IW ¼

Z
G2

rlV0
p

rl

þ ~V0 �~v

� �
z

� �
dG�

Z
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rlV0
p

rl

þ ~V 0 �~v
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Returning to Eq (11), make the interpretationZZ
SE

~N �~i
D E

dS �

ZZ
SS

~N �~i
D E

dS ¼
d

dx

ZZ
Sc

~N �~i
D E

dSDx ¼
dPI

dx
Dx. (24)

Sc explicitly identifies that the area is the duct cross-section. Similarly, in Eq. (23) make the interpretation

Iw ¼
dPw

dx
Dx ¼

d

dx

Z
G

rlV0
p

rl

þ ~V0 �~v

� �
z

� �
dGDx. (25)

The surface integral defining dissipation is represented by

Id ¼

ZZ
DSb

rb z2t
� �

dS. (26)

Here, the surface integral is over the incremental area DSw, consistent with the incremental length Dx.
Eq. (11) becomes

dPI
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þ

dPw

dx
¼

dPI
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dx
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rlV 0
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where the interior power and boundary power are defined by

PI ¼

ZZ
Sc

~N �~i
D E

dS; Pw ¼

Z
G

rlV0
p

rl

þ ~V 0 �~v

� �
z

� �
dG (28)

with ~N defined by Eq. (2). A modified (total) power that includes a surface contribution is then identified as

PT ¼ PI þ

Z
G

rlV 0
p

rl

þ ~V 0 �~v

� �
z

� �
dG. (29)

While Fig. 1 and the development above suggest that only the outer wall of a circular duct is considered, it can
easily be generalized to include an annular duct. The definition of acoustic power in a non-uniform lined duct
given by Eq. (29) is a generalization of the result obtained in Ref. [5] for a two-dimensional uniform duct and
reduces to it.
3. Non-dimensional power

Calculations presented in this investigation have been carried out with FEM for propagation and far-field
radiation, which include FEM calculation of axial wavenumbers [9–12]. Field equations are written in non-
dimensional form. Reference density and speed of sound are rN, cN. For an infinite duct, these conditions are
at the source plane, nominally x ¼ 0. For the radiating duct, reference conditions are in the far field where
mean flow is uniform [9]. A reference length R is defined by the duct radius at the source plane. Non-
dimensional mean flow Mach number, speed of sound, and density ~Mr; cr;rr are defined relative to reference
conditions according to ~Mr ¼ ~V=c1; cr ¼ cl=c1;rr ¼ rl=r1. As noted previously local (dimensional) mean
flow velocity, speed of sound, and density are ~V 0; cl ;rl . Acoustic perturbations of pressure and particle
velocity are also non-dimensional relative to reference conditions according to the replacements
p! p=r1c21; ~v! ~v=c1. Lengths are non-dimensional relative to a reference length R, the duct radius at
the source plane, for example x! x=R. Time is non-dimensional according to the replacement t! R=c1 t.
In the time harmonic case, this gives rise to the non-dimensional frequency Zr ¼ oR=c1.

Non-dimensional energy density and intensity are

ê ¼
e

r1c21
¼

1

rrc
2
r

p2 þ
1

2
rr ~v �~vþ

1

c2r
ð ~Mr �~vÞp (30)

and

~̂
N ¼

~N

r1c31
¼ p~vþ

1

rrc
2
r

~Mr p2 þ rrð
~Mr �~vÞ~vþ

1

c2r

~Mrð ~Mr �~vÞp. (31)
4. Axi-symmetric ducts

When the duct is axi-symmetric interior power is given by Eq. (28) with the appropriate differential area

PI ¼

ZZ
Sc

~N �~i
D E

rdrdy. (32)

Time averaging and orthogonality of the angular dependence of the acoustic modes (e�imy) eliminates the
explicit dependence of acoustic power on the circumferential mode number m. If r is considered as non-
dimensional (based on the radius R), then Eq. (32) is cast in the non-dimensional form

P̂I ¼
PI

2pR2r1c31
¼

Z
Sc

~̂
N �~i
D E

rdr. (33)
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The boundary term from Eq. (29), for the axi-symmetric case

PW ¼

Z
G

rlV 0
p

rl

þ ~V0 �~v

� �
z

� �
rdy (34)

becomes in non-dimensional form

P̂W ¼
Pw

2 p R2r1c31
¼ rrMr

p

rr

þ ~Mr �~v

� �
z

� �
rW ¼ � rrMrftz

� �
rW , (35)

where rW is the local non-dimensional radius of the duct wall (based on R), z is the non-dimensional
displacement of the impedance surface, and Eq. (15) has been used to obtain the second form. The dissipation
term, interpreted as the axial gradient of power, non-dimensional in the same way is

dP̂

dx
¼

1

2pR2r1c31
lim
Dx!0

Id

Dx
¼ lim

Dx!0

1

Dx

Z
Dx

rb z2t
� �

rw ds

¼ rb z2t
� �

rw

ds

dx
¼ rb z2t

� �
rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

drw

dx

� �2
s

. (36)

In Eq. (36), ds is differential arc length along the boundary and drw=dx is the local slope of the boundary
wall.

Eq. (36) provides a method to calculate the change in total acoustic power P̂T2
� P̂T1

over a finite length of
lining

P̂T2
� P̂T1

¼

Z
Ls

rb z2t
� �

rw ds. (37)

Ls is the length between two evaluations of the total power measured along the lining.
5. Benchmark calculations

In this section, benchmarking of the analysis leading to definition of acoustic power for lined non-uniform
ducts is carried out. The approach is two-fold. In the first instance the general development is tested in the case
of a uniform circular duct. Very accurate evaluation of acoustic power is available with the use of duct
eigenvalue calculations and theoretical conclusions can be tested. For non-uniform ducts with purely reactive
linings the requirement of no dissipation of acoustic power, either locally or over some finite length, provides a
computational benchmark.

In Ref. [5], the special case of Eq. (29) was derived and benchmarked for a uniform two-dimensional duct.
Here, this is done for a uniform circular duct and the conservation law is benchmarked for typical cases. A
simple circular duct eigenvalue routine is used to determine the axial wavenumbers based on a finite element
discretization. For each axial wavenumber (each mode), the acoustic power is computed according to Eq. (29),
with the result broken down into power without the boundary contribution and power including the boundary
contribution. Also calculated is the axial gradient of power dPT=dx and the dissipation term of Eq. (27). These
should be equal according to the conservation law.

The first case is for non-dimensional frequency Zr ¼ 22.14, angular mode number m ¼ 0. The flow Mach
number is M ¼ �0.489. The boundary is particularly active for reactive linings, so for this first case the non-
dimensional impedence is Z ¼ 0.001�i3.00. The small resistance is required to help sorting of the axial
wavenumbers in the order of attenuation. Table 1 briefly summarizes results of power calculations for the first
three cut-on modes (modes 1–3) and the first two cutoff modes (modes 9 and 10) for propagation to the right
(designated +, decaying to the right) and to the left (designated �, decaying to the left). Shown are cut-off
ratio, the acoustic power calculated without the boundary contribution, the acoustic power calculated with the
boundary contribution, the axial derivative of power calculated from the left-hand side of Eq. (27) and the
dissipation, calculated from the right-hand side of Eq. (36). No attempt is made to adjust modal amplitudes to
achieve any form of normalization. The first observation is that the gradient of power and dissipation is very
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small in all modes, as it should be for a basically reactive lining. Power gradient and dissipation compare
almost exactly.

A second observation concerns the contribution of the interior power (without boundary power). Note that
for x positive, mode 1 interior power is negative while the total power is positive. Accounting for the boundary
power is essential to produce the correct sign for the total power.

Finally, the two cut-off modes for both directions of propagation have significant contributions from the
boundary power, and accounting for boundary power is essential in producing the result of nearly vanishing
power in these modes. It is interesting to note that mode 1 for positive x and mode 1 for negative x appear to
have the same power gradient and dissipation.

The second benchmark case involves the circular duct with Zr ¼ 22.14, m ¼ 16, M ¼ �0.489. The
impedance is Z ¼ 3.6�i1.3. Table 2 shows the results for this case, retaining the two propagating modes and
one cutoff mode. The boundary power contribution is not as large as in the purely reactive case, but is not
negligible. The power gradient is much larger than in the reactive case as expected because of the resistive part
of the impedance, and the comparison with the dissipation is exact to the accuracy retained. An interesting
feature here is the presence of two modes for x positive and one for x negative with exactly the same power
gradient and dissipation. A similar phenomenon was observed in the first benchmark case.

Another benchmark calculation considers the same case of frequency, angular mode and Mach number
described in Table 1, but with a lining of finite length and all eight propagating modes input. The lining length
is one-half of the duct radius, L ¼ 0.5, extending from x0 ¼ 0.25 to xL ¼ 0.75. For this reactively lined duct,
power is calculated by post-processing FEM calculations of the acoustic field using Eqs. (33) and (35) at six
cross-sections, x1 ¼ 0.302, x2 ¼ 0.402, x3 ¼ 0.452, x4 ¼ 0.552, x5 ¼ 0.602, and x6 ¼ 0.702 (multiples of duct
radius). Comparison is made with power calculated at the source and termination planes (equal power for this
reactive lining) by an alternative approach [10,11] using an eigenfunction expansion and computed axial
Table 2

Benchmark calculations for acoustic power in a uniform circular lined duct determined from acoustic modes and wavenumbers

Zr ¼ 22.14, m ¼ 16, M ¼ �0.489, Z ¼ 3.60�i1.3

Mode Cutoff ratio Power w/o boundary Power with boundary dP/dx Dissipation

1+ 1.15 0.556�01 0.536�01 �0.491+00 �0.491+00

2+ 1.13 0.638�01 0.618�01 �0.491+00 �0.491+00

3+ 0.926 0.116�01 0.109�01 �0.196+00 �0.196+00

1� 1.42 �0.180+00 �0.185+00 �0.491+00 �0.491+00

2� 1.10 �0.116+00 �0.118+00 �0.290+00 �0.290+00

3� 0.941 �0.799�02 �0.987�02 �0.207+00 �0.207+00

Table 1

Benchmark calculations for acoustic power in a uniform circular lined duct determined from acoustic modes and wavenumbers

Zr ¼ 22.14, m ¼ 0, M ¼ �0.489, Z ¼ 0.001�i3.00

Mode Cutoff ratio Power w/o boundary Power with boundary dP/dx Dissipation

1+ 113 �0.112�02 0.433�03 �0.222�03 �0.222�03

2+ 10.2 0.655�01 0.654�01 �0.433�06 �0.433�06

3+ 4.4 0.279�01 0.279�01 �0.974�06 �0.975�06

9+ 0.998 0.218�03 0.108�05 �0.435�05 �0.435�05

10+ 0.886 0.200�03 0.140�06 �0.427�05 �0.426�05

1� 24700 �0.613+00 �0.636+00 �0.223�03 �0.222�03

2� 8.26 �0.385+00 �0.387+00 �0.176�04 �0.179�04

3� 3.88 �0.183+00 �0.184+00 �0.155�04 �0.156�04

9� 0.998 0.216�03 �0.107�05 �0.434�05 �0.435�05

10� 0.886 0.200�03 �0.140�06 �0.426�05 �0.426�05
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Fig. 2. Acoustic pressure magnitude contours. Zr ¼ 22.14, m ¼ 0, M ¼ �0.489, Z ¼ 0.00�i3.00. Input is eight propagating radial modes

with unit power and random phase. Intense acoustic gradients are clearly evident at the lining.

Table 3

Benchmark calculations for acoustic power at several cross-sections in a uniform circular lined duct obtained by post-processing FEM

calculations of the acoustic field

Zr ¼ 22.14, m ¼ 0, M ¼ �0.489, Z ¼ 0.00�i3.00

x Power from eig. expansion Boundary power Interior power Total power

x ¼ 0 7.884 – – –

x ¼ x1 ¼ 0.302 – 2.082 5.799 7.881

x ¼ x2 ¼ 0.402 – 2.076 5.804 7.881

x ¼ x3 ¼ 0.452 – 1.674 6.207 7.881

x ¼ x4 ¼ 0.552 – 1.541 6.340 7.881

x ¼ x5 ¼ 0.602 – 1.692 6.189 7.881

x ¼ x6 ¼ 0.702 – 1.652 6.229 7.881

x ¼ 0.975 7.884 – – –
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wavenumbers. These calculations are very accurate, as no post-processing of FEM results is required. The
lining is purely reactive because a small resistance is not required to sort modes in the lined section. The
benchmark to be achieved in this case is the verification that to within good accuracy there is no attenuation of
acoustic power at any of the chosen cross-sections. In order to achieve the accuracy quoted here, an FEM
propagation code based on cubic serendipity elements was used with mesh density doubled in the radial
direction near the outer wall.

Fig. 2 shows the acoustic field in the duct when the input is all eight propagating hard-wall modes with unit
power and random phase at the source plane x ¼ 0. The presence of intense activity at the lined section is
evident. The acoustic field at the lining has high gradients and requires an abnormally refined mesh (by the
usual standard of 10–15 nodes per wave length). Table 3 shows that power calculated at six interior locations
is essentially the same (with allowance for numerical accuracy of post-processing) and compares favorably
with power calculated at x ¼ 0 and 0.975 (the termination plane). Significant contributions of boundary power
are evident, and this depends on location. Total power remains essentially constant. This is required and the
numerical results seem to be typical for reactive linings with the level of resolution used here. It should be
noted that calculation of acoustic power requires good magnitude and phase resolution of the acoustic field
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and is therefore difficult to obtain accurately in the presence of intense acoustic gradients and short effective
acoustic wave lengths at the lining. Results obtained in the present case are remarkably good, even though no
care was exercised in picking evaluation points (the center of elements at regular intervals along the lining). It
is possible to find evaluation points at which the results are more or less accurate than at others, although
Table 3 does not show this. Power evaluations given in this example are obtained by post-processing in the
interior of elements. In some instances not shown here evaluations have been carried out on the boundaries of
elements. Power evaluations on element boundaries are less accurate than in the interior, and are clearly
discontinuous across inter-element boundaries (a characteristic of the FEM method as implemented). This is
exacerbated in the reactive lining case but tends to disappear if there is only a small amount of dissipation in
the lining.

The intense acoustic gradients that appear in the case of Fig. 2 have the appearance of surface waves. The
lining impedance in this case is within the range found by Rienstra [13] in which surface waves should be found
in lined duct eigenvalue calculations.

A fourth benchmark case considers a non-uniform annular duct with a contraction ratio of 0.7. The
benchmark is again confirmation that acoustic power is conserved. The FEM code with cubic serendipity
elements again has been used with mesh density doubled near the outer wall. Fig. 3 shows acoustic pressure
magnitude contours for the case Zr ¼ 22.14, m ¼ 10. The Mach number at x ¼ 0 is Ml ¼ �0.16 and the
maximum Mach number, which occurs on the outer wall, is Mmax ¼ �0.49. Lining impedance is again purely
reactive with Z ¼ 0.0�i3.0. The lining extends from x ¼ 0.221 to 0.763. Input is three propagating modes with
unit power and random phase. The acoustic field is unremarkable in the entire duct except over the initial
upstream section of the lining (the right end of the lining) where intense gradients occur. In this region, it
appears that local conditions (particularly flow speed, frequency, Mach number, and impedance) are
consistent with the appearance of surface waves. Mesh density used in the computations near the wall was well
in excess of the conventional 10–15 nodes per wave length. This case proves to be good for confirming the
definition of total power of Eqs. (33) and (35) because there is a region where the boundary contribution to
total power is significant and the duct is highly non-uniform. Table 4 provides acoustic power calculations at
six points in the lined region as well as at the source and termination (by modal expansion). Interior points are
at x1 ¼ 0.252, x2 ¼ 0.402, x3 ¼ 0.502, x4 ¼ 0.602, x5 ¼ 0.702, and x6 ¼ 0.748. These are at element mid-
points at regular intervals on the boundary, and were not chosen to place accuracy in a favorable light.
Fig. 3. Acoustic pressure magnitude contours. Non-uniform circular annular duct with cubic polynomial transition. Zr ¼ 22.14, m ¼ 10.

Mach number varies from �0.16 to �0.49 along the outer wall. Reactive lining Z ¼ 0.0�i3.0. Three propagating radial modes with unit

power and random phase.
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Table 4

Benchmark calculations for acoustic power at several cross-sections in a non-uniform circular annular lined duct obtained by post-

processing FEM calculations of the acoustic field

Zr ¼ 22.14, m ¼ 10, �0.489pMp�0.16, Z ¼ 0.00�i3.00

x Power from eig. expansion Boundary power Interior power Total power

x ¼ 0 1.920 – – –

x ¼ x1 ¼ 0.252 – �0.036 1.956 1.920

x ¼ x2 ¼ 0.402 – �0.019 1.938 1.920

x ¼ x3 ¼ 0.502 – �0.455 2.376 1.921

x ¼ x4 ¼ 0.602 – �0.490 2.391 1.902

x ¼ x5 ¼ 0.702 – 0.080 1.838 1.920

x ¼ x6 ¼ 0.748 – 0.372 1.546 1.918

x ¼ 0.975 1.920 – – –
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Table 4 confirms acoustic power conservation from source to termination with allowance made for error
associated with post-processing. At all six points in the lined section power remains close to the power at the
source and termination ends of the duct, and there is a boundary power contribution with large variation with
location. Note that x4, x5, and x6 are in the region of intense gradients at the lining and the maximum error of
approximately 1% is observed at x4. For the given impedance, frequency, flow speed, random phase choice
and mesh density, the high level of accuracy demonstrated is typical outside the area of intense gradients. In
the region of intense gradients accuracy can be expected to vary.

6. Dissipative linings

From limited numerical experiments, it appears that resolution of the acoustic field near a reactive lining
under certain conditions can be very difficult due to intense acoustic gradients. Only a small amount of
resistance in the lining impedance eliminates the intense gradients except possibly right at the transition from
hard wall to soft wall. This is shown in the next example. The case of Fig. 3 is retained in every detail except
the impedance of the lining, and this is changed to Z ¼ 0.5�i3.0. The acoustic field in Fig. 4 shows
considerably reduced activity near the lining.

The benchmark in this case is the change in acoustic power from one point in the lining to another and the
comparison of this to the dissipation computed from Eq. (37). Points x1 and x6 are used, however now
x1 ¼ 0.250 and x6 ¼ 0.750, the left boundary of the first lined element and the right boundary of the last lined
element. Power at the source and termination planes is also calculated (by eigenfunction expansion) to set the
overall attenuation. The result of the benchmark is shown in Table 5. The calculated dissipation and change in
power between x1 and x6 are very close and compare favorably with the change in power from source plane to
termination plane. This serves as a confirmation of the theoretical results.

7. Acoustic radiation

Power calculations described above are equally applicable to ducts radiating to the far field. This provides
the opportunity to benchmark power calculations in this application and to determine if conclusions regarding
lining performance obtained on the basis of an infinite (non-reflecting) duct model correlate with conclusions
obtained based on a model that includes radiation to the far field. There are three features of radiation to the
far field that are different from propagation in an infinite duct with similar geometry. The inlet mean flow is
not identical in the two cases even though the Mach number at the source plane is identical. The exterior flow
in the radiation case plays a role in the details of the interior flow, particularly well upstream of the source
plane. For acoustic linings placed near the inlet throat performance may differ. In the radiation code as used
here the mean flow field is incompressible with a compressibility correction, while in the propagation code the
mean flow is fully compressible. Since power calculations are based on a compressible mean flow, there may be
differences in results. Finally, radiation to the far field presents a different impedance to the source than does a
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Table 5

Acoustic power comparisons for duct geometry of Fig. 4

x Power by eig. expansion Power from Eqs. (32) and (35) Dissipation x1–x6 Delta power x1–x6

x ¼ 0 2.227 – – –

x ¼ x1 ¼ 0.25 – 2.224 – –

x ¼ x6 ¼ 0.75 – 1.098 1.128 1.126

x ¼ 0.975 1.098 – – –

Fig. 4. Acoustic pressure magnitude contours. Annular duct with cubic polynomial transition section Zr ¼ 22.14, m ¼ 10. Mach number

varies from �0.16 to �0.49 along the outer wall. Lining impedance is Z ¼ 0.5�i3.0. Three propagating radial modes with unit power and

random phase.
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reflection free termination, probably altering the details of the acoustic field. These details of the radiation and
propagation codes have been discussed in Refs. [9–12].

In the examples considered in this section, calculations have been made with versions of the radiation and
propagation codes based on the FEM with cubic interpolation [14,15] on a mesh similar in density to the ones
used in previous examples. Cubic interpolation is required to achieve the accuracy for power calculations
shown in the following.

The case considered is a turbo-fan inlet geometry shown in Fig. 5. The interior contour has been duplicated
up to the throat in an FEM radiation model and in an infinite duct model. Fig. 5 shows sound pressure level
contours for the inlet geometry with radiation to the far field. The exterior flow has been set at M ¼ 0.2. Other
pertinent parameters are shown on the figure. The random phase for the four propagating modes at the source
plane is obtained with a random number generator but is the same for both radiation and propagation. An
acoustic lining with impedance Z ¼ 1.0�i1.28 begins at approximately x ¼ 0.06 (relative to the source plane)
and extends to approximately x ¼ 0.75 in both cases for a lining length of approximately L ¼ 0.69. The
location is given in approximate terms because the mesh in the two cases is of comparable density but not
exactly the same, and lining placement is tied to finite elements and therefore to discrete location possibilities.
Lining placement is as near to identical as possible. The impedance was chosen to produce the best attenuation
for the random phases chosen. Normalized acoustic power at the source plane is 3.99. Attenuation was
calculated with the use of Eq. (32) in the far field. Attenuation achieved was 5.05 dB.

Fig. 6 shows similar results for the reflection free termination model in which only the interior of the duct is
modeled. In this case contours are for acoustic pressure magnitude scaled from 0 to 1 on a linear scale. Visual
comparison of the acoustic fields of Figs. 5 and 6 reveal considerable similarity, even though the radiation
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Fig. 5. Sound pressure level contours for FEM radiation model of turbo-fan inlet Zr ¼ 22.14, m ¼ 10. Fan face Mach number M ¼ 0.49,

Mach number in the far field (forward flight) M ¼ 0.2. Lining impedance is Z ¼ 4.37�i0.32. Unit power per mode, random phase.

Fig. 6. Acoustic pressure magnitude contours for FEM reflection free termination model for turbo-fan inlet Zr ¼ 22.14, m ¼ 10. Source

plane Mach number M ¼ 0.49. Lining impedance is Z ¼ 4.37�i0.32. Unit power per mode, random phase.
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model contours are SPL, and therefore logarithmically distributed, and the infinite duct contours are simply
pressure magnitude, and linearly distributed. For the infinite duct model normalized acoustic power at the
source plane is 3.99, and attenuation is 4.98 dB. At least in this case lining performance predicted in the
radiation model and the reflection free model is nearly the same. This comparison is exceptionally good, but in
other cases may be geometry dependent, particularly when the inlet geometry considerably distorts the flow
causing large mean flow gradients in the throat region.

It is interesting to observe the attenuation achieved at set axial positions along the duct and to compare the
two cases on this basis. Tables 6 and 7 are used for this purpose. In the case of the radiating duct, power is
calculated at x ¼ 0 using the accurate eigenfunction expansion, and at x1 ¼ 0.029, x2 ¼ 0.196, x3 ¼ 0.304,
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Table 6

Acoustic power comparisons for duct geometry of Fig. 5

x Power by eig. expansion Power from Eq. (32) Dissipation x1–x6 Delta power x1–x6 Delta power x0–x7

x ¼ 0 3.994 – – – –

x ¼ x1 ¼ 0.029 – 3.993 – – –

x ¼ x2 ¼ 0.196 – 3.959 – – –

x ¼ x30.304 – 3.935 – – –

x ¼ x4 ¼ 0.401 – 3.626 – – –

x ¼ x5 ¼ 0.512 – 2.507 – – –

x ¼ x6 ¼ 0.791 – 1.271 2.722 2.721 –

x ¼ x7 – 1.270 (4.972 dB) (4.971 dB) 2.722

(4.975 dB)

Table 7

Acoustic power comparisons for duct geometry of Fig. 6

x Power by eig. expansion Power from Eq. (32) Dissipation x1–x6 Delta power x1–x6

x ¼ 0 3.994 – – –

x ¼ x1 ¼ 0.024 – 3.993 – –

x ¼ x2 ¼ 0.196 – 3.960 – –

x ¼ x3 ¼ 0.301 – 3.936 – –

x ¼ x4 ¼ 0.408 – 3.585 – –

x ¼ x5 ¼ 0.518 – 2.500 – –

x ¼ x6 ¼ 0.787 – 1.269 2.721 2.722

x ¼ L 1.269 – (4.972 dB) (4.971 dB)

– 2.725

(4.975 dB)
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x4 ¼ 0.401, x5 ¼ 0.512, and x6 ¼ 0.791 (multiples of the duct radius) from the source plane. x1 is just ahead
of the lining. A final calculation is made in the far field at x ¼ x7 which is at 2.5 duct radii from the origin
shown on Fig. 5 and in the far field. The lining runs from x ¼ 0.056 to 0.745 from the source plane. In the case
of the propagation model, power is calculated at the source plane x ¼ 0 and the termination plane x ¼ 1.43
using the eigenfunction expansion and at x1 ¼ 0.024, x2 ¼ 0.196, x3 ¼ 0.310, x4 ¼ 0.408, x5 ¼ 0.518, and
x6 ¼ 0.787 measured from the source plane as in the radiating duct. x1 is just ahead of the lining and x6 is just
beyond the lining. The lining runs from x ¼ 0.055 to 0.747. Tables 6 and 7 show for each location the
normalized acoustic power calculated either from the eigenfunction expansion or from Eqs. (33) and (35), as
applicable. A first point to note is the comparison between the source side power calculated by eigenfunction
expansion and from Eqs. (33) and (35) applied at x1 (between the source plane and the lining). With the
assumption that the eigenfunction expansion is the baseline, the present theory is judged to produce very
accurate results.

Another measure of theoretical consistency and numerical accuracy is the comparison between change in
acoustic power (delta power) between two axial positions (x1 and x6) obtained from Eqs. (33) and (35) and the
dissipation calculated from Eq. (37). In both the radiation model and the propagation model this comparison
is exceptionally good as noted in columns 4 and 5 in Tables 6 and 7 where the transmission loss based on x1
and x6, in dB, is also shown.

In the case of radiation to the far-field calculation of power in the far field (x7) from Eq. (33) is shown in
column 2 of Table 6. The change in power from the source plane to x7 is shown in column 6, and compares
favorably with delta power and dissipation from x1 to x6. The small error shown here depends on mesh
resolution. Mesh resolution in the far field at the surface denoted by x7 is considerably coarser than inside the
inlet where all other evaluations are made. A similar comparison is available in Table 7 for the propagation
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code. The change in power calculated between source plane and termination plane and the change in power
between x1 and x6 are nearly identical. The conclusion reached is that benchmark calculations for acoustic
power for both the propagation code and radiation code are very favorable.

8. Conclusion

Acoustic power is a valuable diagnostic tool for assessment of performance of acoustic treatment in ducts
and it also proves to be a valuable metric for the assessment of accuracy of computational codes. A
formulation for acoustic power has been extended to lined non-uniform ducts. In lined sections, a boundary
power contribution is appended to the classical definition of intensity and power. A conservation law for
acoustic power has been obtained and benchmarked using the requirement of power conservation for a purely
reactive lining. This proves to be challenging in the case considered because the lining impedance chosen is
consistent with the appearance of surface waves and locally reactive behavior near the lining leading to intense
acoustic gradients. The boundary power contribution in this instance can be large and both boundary power
and interior power may be difficult to compute accurately because of insufficient resolution of the acoustic
field. A fundamental result of the power conservation law requiring the change in acoustic power from one
duct cross-section to another to be accounted for by the dissipation of the lining is shown to be very accurately
predicted numerically. A numerical experiment based on calculation of acoustic power attenuation for a
typical turbo-fan inlet modeled with a radiation code and a reflection free propagation code has been used for
further confirmation. It has been found that both models predict similar attenuation and comparisons of
change in acoustic power and dissipation by the lining in both cases validate the power conservation
formulation. Local acoustic power calculations are a valuable tool for assessing lining performance.
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